\qquad

C.U.SHAH UNIVERSITY

 Winter Examination-2015
Subject Name : Engineering Mathematics - III

Subject Code :4TE03EMT1
Branch : B.Tech (AII)
Semester : 3
Date :01/12/2015
Time :2:30 To 5:30
Marks :70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Attempt the following questions:
a) State Dirichlet'sconditions for Fourier series.
b) Find Laplace transform of L ($\cos h$ at $\sin a t)$.
c) State second shifting theorem for Laplace transform.
d) Eliminate the arbitrary function from the equation $z=x y+f\left(x^{2}+y^{2}\right)$.
e) Define Transcendental equation and give an example of it.
f) Write the convergence criteria of Newton - Raphson method.
g) Find P.I. of $(D+1)^{2} y=e^{-x}$.

Attempt any four questions from Q-2 to Q-8

Q-2

Q-3

Attempt all questions
a) Find the Fourier series of the function $f(x)=\left\{\begin{array}{cc}-k & \text { if }-\pi<x<0 \\ k & \text { if } 0<x<\pi\end{array}\right.$ with $f(x+2 \pi)=f(x)$.
b) Find inverse Laplace transform of $\frac{4 s+5}{(s-1)^{2}(s+2)}$.
c) Find Laplace transform of (a) $t^{2} \sin 4 t \quad$ (b) $\frac{\sin t}{t}$.

Attempt all questions

a)

Solve $\frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+5 x=e^{-t} \sin t, x(0)=0, x^{\prime}(0)=1$.
b) Determine the Fourier series up to and including the second harmonic to represent the periodic function $y=f(x)$ defined by the table of values given below. $f(x)=f(x+2 \pi)$

x^{0}	0	30	60	90	120	150	180	210	240	270	300	330
$f(x)$	0.5	0.8	1.4	2.0	1.9	1.4	1.2	1.4	1.1	0.5	0.3	0.4

a) Using Laplace transform solve $\ddot{x}+4 \dot{x}+13 x=2 \delta(t)$, where at $t=0$, $x(0)=2$ and $\dot{x}(0)=0$.
b) Find Fourier series of $f(x)=\left\{\begin{array}{ll}0 & \text { if } 0<x<l \\ a & \text { if } l<x<2 l\end{array}\right.$ with $f(x+2 l)=f(x)$.
c) Express $f(x)=c-x$ when $0<x<c$ as a half - range cosine series with period 2c.
Attempt all questions
a) Solve: $\frac{d^{3} x}{d t^{3}}-3 \frac{d^{2} x}{d t^{2}}+9 \frac{d x}{d t}-27 x=\cos 3 t$.
b) Solve: $\left(D^{4}-1\right) y=e^{x} \cos x$.
c) Show that the frequency of free vibration in a closed electrical circuit with induction L and capacity C in series is $\frac{30}{\pi \sqrt{L C}}$.
Attempt all questions
a) Solve: $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=\log x$ sin($\left.\log x\right)$.
b) Using the method of variation of parameters solve

$$
\begin{equation*}
y^{\prime \prime}-6 y^{\prime}+9 y=\frac{e^{3 x}}{x^{2}} \tag{05}
\end{equation*}
$$

c) Using convolution theorem find Laplace inverse transform of

$$
\begin{equation*}
\frac{1}{s^{2}(s-1)} \tag{04}
\end{equation*}
$$

Attempt all questions
a) Solve $\frac{y^{2} z}{x} \frac{\partial z}{\partial x}+x z \frac{\partial z}{\partial y}=y^{2}$.
b) Solve by the method of separation of variables $4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=3 u$, given that $u=3 e^{-y}-e^{-5 y}$ when $x=0$.
c) Find $\sqrt{10}$ correct to three decimal places by using Newton - Raphson iteration formula.

Attempt all questions

a) Using Bisection method, find the root of $2 \sin x-x=0$.
b) Using RegulaFalsi method find real root of $x \log _{10} x-1.2=0$ correct to four decimal places.
c) Solve: $y^{2} p-x y q=x(z-2 y)$.

