C.U.SHAH UNIVERSITY Winter Examination-2015

Subject Name : Engineering Mathematics - III

	Subject Code :4TE03EMT1											Branch : B.Tech (All)				
	Semester Instructio	r : 3 ons:	Date	e :01/2	12/201	15	Time	:2:30	То 5:3	0	Mar	ks :70)			
	 (1) U (2) I (3) I (4) A 	 Use of Programmable calculator & any other electronic instrument is prohibited. Instructions written on main answer book are strictly to be obeyed. Draw neat diagrams and figures (if necessary) at right places. Assume suitable data if needed. 														
Q-1	a)	Attemp State D	ot the irichle	follov et'scor	ving c nditio	juesti ns for	s tions: for Fourier series.								(14) (02)	
	b)	Find La	Find Laplace transform of $L(\cos h \ at \sin at)$.													
	c)	State se	cond	shiftir	ng the	orem f	for Lap	lace tra	ansform	n.					(02)	
	d)	Elimina	Eliminate the arbitrary function from the equation $z = xy + f(x^2 + y^2)$.													
	e)	Define Transcendental equation and give an example of it.														
	f)	Write th	Write the convergence criteria of Newton – Raphson method.													
	g)	Find P.I. of $(D + 1)^2 y = e^{-x}$.														
Attempt any four questions from Q-2 to Q-8 Q-2 Attempt all questions													(14)			
C	a)	Find the Fourier series of the function $f(x) = \begin{cases} -k & \text{if } -\pi < x < 0 \\ k & \text{if } 0 < x < \pi \end{cases}$ with $f(x + 2\pi) = f(x)$													(05)	
	b)	Find inverse Laplace transform of $\frac{4s+5}{(s-1)^2(s+2)}$. (05)														
	c)	Find Laplace transform of (a) $t^2 \sin 4t$ (b) $\frac{\sin t}{t}$. (6)													(04)	
Q-3	a)	Attempt all questions a) Solve $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = e^{-t} \sin t$, $x(0) = 0$, $x'(0) = 1$.												(14) (07)		
	b)	b) Determine the Fourier series up to and including the second harmonic to (0 represent the periodic function $y = f(x)$ defined by the table of values given below. $f(x) = f(x + 2\pi)$													(07)	
		f(x)	0.5	0.8	1.4	2.0	1.9	1.4	1.2	1.4	1.1	0.5	0.3	0.4		

Page 1 || 2

Q-4 Attempt all questions

(14)

(14)

(14)

- Using Laplace transform solve $\ddot{x} + 4\dot{x} + 13x = 2\delta(t)$, where at t = 0, a) (05) x(0) = 2 and $\dot{x}(0) = 0$. Find Fourier series of $f(x) = \begin{cases} 0 & \text{if } 0 < x < l \\ a & \text{if } l < x < 2l \end{cases}$ with f(x + 2l) = f(x). (05)b) Express f(x) = c - x when 0 < x < c as a half – range cosine series with period **c**) (04) 2c. Attempt all questions (14) Solve: $\frac{d^3x}{dt^3} - 3 \frac{d^2x}{dt^2} + 9 \frac{dx}{dt} - 27 x = \cos 3t.$ (05) a) Solve: $(D^4 - 1)y = e^x \cos x$. b) (05)
 - Show that the frequency of free vibration in a closed electrical circuit with **c**) (04) induction L and capacity C in series is $\frac{30}{\pi\sqrt{1C}}$.

Q-6 Attempt all questions

a) Solve:
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \log x \sin(\log x)$$
. (05)

- Using the method of variation of parameters solve (05)b) $y'' - 6y' + 9y = \frac{e^{3x}}{x^2}.$
- Using convolution theorem find Laplace inverse transform of (04) c) 1

$$s^{2}(s-1)$$

Attempt all questions (14)
a) Solve
$$\frac{y^2 z}{x} \frac{\partial z}{\partial x} + xz \frac{\partial z}{\partial y} = y^2$$
. (05)

Solve by the method of separation of variables 4 $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$, given that (05)**b**) $u = 3 e^{-y} - e^{-5y}$ when x = 0.

Find $\sqrt{10}$ correct to three decimal places by using Newton – Raphson iteration (04) **c**) formula.

Q-8

Q-7

Q-5

Attempt all questions

- Using Bisection method, find the root of $2 \sin x x = 0$. (05) a)
- Using RegulaFalsi method find real root of $x \log_{10} x 1.2 = 0$ correct to (05) b) four decimal places.

c) Solve:
$$y^2 p - xyq = x (z - 2y)$$
. (04)

Page 2 || 2

